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Abstract. A mathematical model is developed to predict the three-dimensional time-dependent flow of a non-
Newtonian shear-thinning liquid coating on a non-planar substrate. The model employs the lubrication approx-
imation and other simplifications. Results are compared with experimental observation of the drainage flow out
of an axisymmetric indentation in a vertical substrate. A straightforward experimental method is developed to
capture quantitative measurements of the evolving free-surface shapes. Two different architectural paints are used.
The agreement between theory and experiment is good overall; however, agreement is better for one of the paints,
presumably due to inadequate rheological modeling of the other. Improved understanding of the coating flow of
these liquids can be expected to lead to improved products and processes.
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1. Introduction

In terms of value added, the coating industry is of very significant size. Virtually all man-
ufactured products require coating, for both decorative and protective reasons. Because the
industry is fragmented, it is difficult to assign to it a precise yearly value, but it is surely
several hundred billion dollars worldwide. For example, the coating of new automobiles and
trucks is at least a thirty-billion-dollar yearly activity. Considering the size of the industry, it
is perhaps surprising therefore that large-scale numerical modeling of coating flow is in its
relative infancy.

Most commonly, coatings are applied as liquids; these liquids continue to flow until the
coating is fully dry. Thus fluid-mechanics modeling is potentially of great benefit in helping
to improve the flow performance of candidate coatings. Mathematical modeling, employing
the low-speed, small-surface-slope approximation, referred to commonly as the lubrication
approximation, has been in use for many years. Early work included the prediction of coating
thickness on plates withdrawn from a liquid bath, an explanation for rib-defect formation
in blade or rotary coating, and the calculation of the leveling effect of surface tension for
a slightly nonuniform liquid surface [1–3]. For the most part, lubrication-theory analysis
has been restricted to Newtonian liquids; however, Tallmadge extended the plate-withdrawal
theory to power-law liquids [4]. More recently, two-dimensional lubrication flow, using a
three-constant Ellis rheological model, where the viscosity at any point within the coating
is a particular function of the shear rate-of-strain, was used in a study of contact-line motion
[5].
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The above analyses assumed that the flow field is two-dimensional. Only recently have
fully three-dimensional unsteady flows been calculated. Perhaps the earliest work was our sim-
ulation of drainage, under gravity, of a small droplet on a vertical wall [6]. Although a coarse
mesh was used, the calculated sequence of droplet shapes was quite similar to the experimental
results of Tanner [7]. Continual increases in computer power have allowed more complex
flows to be calculated. As the mesh size becomes smaller, in finite-difference calculations,
it also becomes necessary to use partially-implicit methods in order to maintain numerical
stability. We have calculated drop break-up on heterogeneous substrates; that is substrates that
exhibit a pattern of different values of equilibrium contact angle [8, 9]. Spontaneous dewetting,
as is commonly seen when water ‘beads up’ on a freshly-waxed car, has been simulated and
appears to be in good agreement with observation [10, 11]. These simulations use a type of
alternating-direction implicit (ADI) algorithm. The ADI technique was originally conceived
by Peaceman and co-workers [12]. Three-dimensional drainage calculations, including both
gravity and applied surface stresses have recently been reported by Eres et al. [13]. For small
deviations from a steadily propagating two-dimensional solution, the numerical solution faith-
fully reproduces the results of linear stability analyses for either driving mechanism [14, 15].
Other recent three-dimensional-simulation results can be found in the work of Lopez et al.
who consider the stability and evolution of a dry spot in a liquid coating layer [16].

In this paper we treat a particular industrially-motivated problem. We consider a vertical
substrate to which a thin uniform liquid coating has been applied. There is an axisymmetric
indentation in the substrate whose dimensions are approximately 7 mm in diameter and 1 mm
in depth. This flat-bottomed indentation has sloping side walls. The trapezoidal cross section
of the indentation is shown in Figure 6. In light frame construction of residential dwellings
in North America, doorways and windows are encased with machined wooden pieces. These
casings are usually fastened with a nail gun. The nail head is set below the surface of the
wood. Unless the resulting indentations are laboriously filled with putty which is then allowed
to dry and harden, subsequent painting of vertical casing elements will likely result in the
unsightly drip marks that are considered here. Development of architectural paints whose
flow properties have been adjusted, so as to minimize the labor involved in their application,
is a principal research goal of the industry.

The next section outlines the theoretical basis for the computer simulation. The model
requires the specification of fluid and geometric parameters and will accept an arbitrary,
experimentally-measured, data set giving viscosity as a function of applied shear stress. The
experimental technique for generating the dripmarks, capturing their images in real time, and
measuring their surface profiles is given in Section 3. Sections through the liquid are taken
from the photographic flow record, although a number of corrections need to be applied.
Direct comparison between theory and experimental flow results can be found in Section 4
for two different paints. This section also contains theoretical predictions showing how the
present shear-thinning flow differs from the flow expected for a Newtonian liquid. The effect
on the drainage profile of indentation diameter is also considered. Additional perspective on
this work and plans for future investigation may be found in the concluding section.

2. The theoretical model

For slow flow of thin layers of Newtonian liquid, the lubrication approximation has a well-
established mathematical foundation. It is the leading-order approximation that results when
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the flow-inclination angle, relative to the substrate, is considered to be a small parameter [17
–19]. We use a right-handed three-dimensional Cartesian coordinate system with the (x, y)

plane lying on the flat or ‘land’ area of the substrate. The substrate is oriented vertically
with the x-axis directed downward while the y-axis is horizontal; z is distance measured
perpendicular to the substrate. At any instant of time, the free surface of the coating is given by
the function z = h(x, y, t) where t is time. The liquid layer is bounded above by a tractionless
free boundary upon which surface tension acts. The layer is bounded below by the substrate
whose equation is z = h1(x, y). Thus, the thickness of the coating is given by h − h1. Here
h1 is taken to be the equation of a circular indentation with a flat bottom, corresponding, for
example, to a nail head that has been ‘set’ below the level of the substrate using a nailpunch.

The evolution equation for the free-surface shape follows from application of the global
mass-conservation equation

∂h

∂t
= −∇ ·Q . (1)

Here ∇ is the two-dimensional differential operator with respect to the orthogonal substrate
coordinates x and y. Q is the flux vector defined by

Q =
∫ h

h1

u dz,

where u is the vector velocity; u is essentially parallel to the flat substrate. For fully-developed
flow in a two-dimensional channel of depth h, the relationship between Q and the driving
pressure gradient is

Q = − h3

3µ
∇p , (2)

which is simply Poiseuille’s law for a Newtonian liquid of constant viscosity µ. This law will
now be modified to account for shear-thinning behavior.

We will assume that the coating liquid falls into the class referred to as ‘generalized New-
tonian’ so that the viscosity µ depends only on the local value of shear stress. (See Bird et al.
[20, pp. 205–256].) It is usual practice to assume a simple functional relation between µ and
the shear stress τ with one or more adjustable parameters. For example, the so-called Ellis
model is one possible choice. According to this often-used model, the relation is

1

µ
= 1

µ∗

(
1+

∣∣∣∣ τ

τ1/2

∣∣∣∣
α−1
)
. (3)

Here µ∗ is the viscosity when the stress is zero. The input parameter τ1/2 is the value of
shear stress for which the viscosity has been reduced by a factor of one-half. Shear-thinning
behavior is also controlled by the input exponent α; α = 1 corresponds to Newtonian flow
and α > 1 is the range for shear-thinning behavior.

It is now necessary to find the flux Q in the generalized Newtonian case. We apply the
no-slip condition on the substrate and the condition τ = 0 on z = h. In scalar form, the
constitutive law is simply

τ = µ(τ)
∂u

∂z
,
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which can be integrated to find the velocity profile across the thin liquid layer. The key to
this integration is the recognition that the shear stress τ is a linear function of the normal
coordinate z. Further details are given in the Appendix. A method is developed there that
enables the direct use of experimental data for µ(τ) without the need to fit these data to an
Ellis, or any other, model. The general result for the flux is

Q = −∇p
3µ∗

(h− h1)
3 F, (4)

where the ‘fluidity magnification factor’ F represents the fractional increase in flow due to
shear thinning. It depends on local values of the pressure-gradient magnitude and the total
liquid depth h− h1. For example, had the Ellis model been used, we would have had

F =
[

1+
(

3

α + 2

)( | ∇p | (h− h1)

τ1/2

)α−1
]

.

Note that, when the Ellis reference stress τ1/2 is very large, the additional flow due to shear
thinning, as given by the second term in the bracketed expression, is quite small.

For the present drainage problem, the pressure has contributions from the capillary pres-
sure, which is essentially the product of the surface curvature and the surface tension, and
from gravity. Gravity is taken to act in the downward or positive x-direction. The unit vector
in the x-direction is i. Thus

∇p = −σ∇∇2h− ρgi, (5)

where σ is surface tension, ρ is density and g is the acceleration of gravity. For small surface
inclination, ∇2h is approximately equal to the surface curvature. A model for gravity drainage
flow in one space dimension, using the Ellis model, was reported by Weidner and Schwartz
[5]. Kim et al. [21] modeled flow of a Newtonian coating on a roughened substrate simply by
using the local total flow depth h − h1, to replace h in (2), just as we are doing here. This is
similar to the method employed by Kalliadasis and Homsy who consider the stability of flow
over substrate topography [22]. Three-dimensional flow on a surface containing gravure cells,
as used in printing operations, was simulated by Schwartz et al. [23]. In that work the gravure
indentations were modeled using the total depth h− h1 and Ellis rheology was also used.

The Ellis model is a typical generalized Newtonian-flow law; sometimes other laws provide
a better fit to the experimental data [20]. No single functional form is ever a good model for all
coatings. Here, instead, we use the procedure described in the Appendix that allows tabular
data for µ(τ) to be used directly. This eliminates a source of error and also simplifies the
reduction of experimental results since there is no need to fit the data to a particular a priori
model.

It is useful, for computation, to write the evolution equation in dimensionless variables.
The equation becomes

∂h

∂t
= − ∂s

∂x
− ∇ · (s∇∇2h) . (6)

Here s is the ‘permeability’, taking into account the thinning behavior. Specifically

s = (h− h1)
3F, (7)
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where F is again the dimensionless factor in square brackets in Equation (4) as determined
from the rheological data, or ‘flow curve’, using the method given in the Appendix. In (6)
and (7), the thicknesses are written as multiples of h0, the initial uniform coating thickness on
the flat or ‘land’ part of the substrate. Thus h0 is the unit of length in the z-direction. For the
substrate coordinates (x, y), the length unit is

L1 =
(
σh0

ρg

)1/3

. (8a)

The reference time is

T ∗1 =
3µ0L1

ρgh2
0

, (8b)

where the reference viscosity is µ0 = µ(τ0) and τ0 = ρgh0, the substrate shear stress for
gravity drainage of the initial uniform coating of thickness h0. Once the configuration of the
initial coating is specified, Equation (6) is used to predict its subsequent flow behavior. Note
that the dimensional scaling results in an evolution equation that is free of parameters.

The dimensionless equation (6) is solved by a finite-difference method in space and time.
The substrate is discretized into an M × N rectangular computational domain. Spatial deriv-
atives are approximated using central differences; thus the method is second-order accurate
in space. Time marching is made efficient using a novel semi-implicit method. It is similar,
in principle, to alternating-direction (ADI) methods used for second-order diffusive problems,
as discussed by Peaceman [12]. Nonlinear pre-factors in s are evaluated at the ‘old’ time
level. Thus, the method is only first-order accurate in time. However convergence is easily
verified under temporal refinement and time-steps are adjusted accordingly. In general, the
spatial differential operators are split into x and y parts. The h values are updated implicitly,
but sequentially, leading to pentadiagonal banded systems since the evolution equation (6) is
fourth-order in space. These banded linear systems are solved efficiently by Gauss elimination.
Odd-order normal derivatives are taken to be zero on the edges of the computational window.
Thus the computational window must extend at least several radii upstream and downstream
of the indentation. All computational results presented here have been verified as being con-
verged to graphical accuracy. A point-spacing �x = 0·05R, where R is the radius of the
indentation at the land level, is sufficient to achieve this accuracy in all cases.

It can easily be shown that an explicit, i.e. simple Euler, time integration is unstable for
this spatially fourth-order system unless

�t < O(�x)4 . (9)

Here �t is the time step, �x is the space step, and O signifies mathematical order of magni-
tude. Because of this constraint, the present method is faster by several orders of magnitude
compared to an explicit scheme. The method is also much faster than an implicit time integra-
tion were the ADI technique not used, in which case very large sparse systems of equations
would have had to be solved. Using the ADI scheme, the computer time is proportional to
the number MN of calculated h values. Typical calculations use about 20,000 surface or-
dinates and require less than one minute on a PC with an Athlon 1·2 gHz processor. The
numerical algorithm is written in Fortran and the public-domain Linux operating system
is used. Rendered output displays employ the Geomview public-domain graphics package
(viz. http://www.geomview.org). We note that the theoretical problem is bilaterally symmetric
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Figure 1. Schematic experimental set-up, top view. The projector P places equally-spaced black vertical lines on
the surface of the liquid coating, shown shaded. The camera CCD is inclined at an angle θv to the substrate SS.
For the results reported here the camera angle θv is 46·1◦.

Figure 2. Grid is projected from above. Camera is inclined at angle θV . Actual ruling spacing is yT . Camera
picture spacing is w if the surface is flat. Here the right-most open point is displaced upward an amount �hi to
the black point. The camera picture shows that the apparent point spacing has been increased from w to w + di .
Each di may be positive or negative.
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about the vertical centerline. This symmetry is exploited in the simulation and reduces the
computational load by a factor of one-half.

3. Experimental procedure

Two different paints were applied to an aluminum substrate in which a precision-drilled flat-
bottomed indentation had been made. The same substrate was used for both paints and it was
carefully cleaned between tests. The indentation has a radius R of 0·357 cm at the land level
and a depth of 0·102 cm. This axisymmetric indentation has a flat bottom and side walls with
a 45 degree slope. The substrate was held in a vertical orientation, so that the paint flows out
of the indentation due to gravity. Initially the paint surface was flat; the paint was applied by
means of a precision instrument known as a drawdown bar. The initial thickness was h0 =
0·022 cm for all experiments reported here. The two paints were an interior flat latex that
will be called Paint IL and an exterior flat latex called Paint 22. The values of surface tension
and density for the two paints were similar. The measured values were σ = 36·5 dynes/cm,
ρ = 1·34 gm/cm3 for Paint 22 and σ = 35·6 dynes/cm, ρ = 1·38 gm/cm3 for Paint IL. A
TA Instruments AR-1000N Controlled Stress Rheometer was used to measure viscosity for
the two paints as a function of shear stress. Results for the two paints are given in the next
section.

The image of the paint free surface was recorded photographically, as a function of time,
with a CCD camera and a video capture card. The evolving free-surface shapes were then com-
pared with results of the theoretical and numerical model described above. The experimental
set-up is shown schematically in Figure 1. A projector P projects a set of equally-spaced,
nominally vertical, lines onto the paint-covered substrate. The projector is perpendicular to the
substrate. Unless the CCD camera is also held at right angles to the substrate, the projected
vertical lines will be distorted because the liquid surface is nonuniform. The shape of any
distorted vertical line is actually a scaled vertical cross section of the free surface. Good results
were obtained when the camera was set at about a 45 degree angle to the substrate. This angle
is denoted as θV in the figure.

In Figure 2 the true spacing between lines projected onto a vertical plane is yT . The
projected lines viewed in-plane are represented as open circles in the figure. When viewed
at an angle θv < 90◦, the apparent line spacing will be w for a planar surface, where w < YT .
Suppose, however, the surface has a local variation in height, so that the ordinate difference
between adjacant lines is �hi; in this case, the apparent line spacing would be w + di . Far
away from the indentation and the flowing liquid mound, the surface should be essentially flat
and this region provides the reference values for w. Relative to this straight reference line, a
set of values of di gives the shape of a vertical section through the liquid. The actual values
�hi are easily calculated. The specific relationships, from Figure 2, are

sin θv = w

yT

cos θv = di

�hi

. (10a,b)

A representative experimental picture, showing the distorted rulings, is in Figure 3. The
height of the picture is 1·43 cm and the picture width is 0·74 cm. The corresponding actual
width on the substrate, as calculated using sin θv, is 1·03 cm. Because the picture size is
limited, the moving liquid mound eventually moves out of the field of view. The horizontal
white line in the picture indicates the location of the top of the indentation.
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Figure 3. Experimental picture of a distorted pattern of vertical lines on a nonuniform liquid surface; paint IL at
15 seconds after the start of the motion. Each distorted line, after corrections and scaling, is a cross section through
the depth of the coating.

It is clear, from an examination of Figure 3, that the stripes can yield the surface shape.
Certain corrections need to be applied in order to extract accurate liquid surface shapes from
the distorted stripe patterns, however. The most important of these corrects for the deviation
of the reference lines from the true vertical. This angular error, which is visible on the vertical
sides of Figure 3, is less than 0·5 degree. Yet, because the coating height is a difference
measurement, failure to correct for this misalignment causes relatively large error. Another
necessary correction is for parallax. As may be seen in Figure 1, the distance from the camera
to the lines is not constant. Thus the reference lines are not exactly equally spaced and this
must be accounted for. It was found to be more accurate, therefore, to measure the deviation
of each line relative to its own ordinate location away from the region of surface deformation.

A more complete discussion of experimental procedures may be found in a companion
paper that has recently been submitted [24].

4. Theoretical and experimental results

Figure 4 shows the measured variation in viscosity, in poise, with shear stress, in dynes/cm2,
for the two paints. Using the numerical solution, we determined that the maximum stress,
occurring anywhere in the flow, was less than about 500 dyn/cm2 for the coating thickness



Flow of architectural coatings on complex surfaces; theory and experiment 161

Figure 4. Measured viscosity µ in poise versus shear stress τ in dynes/cm2 for the two paints used in this study,
termed Paint IL and Paint 22.

used in these experiments, Thus the figure includes the entire stress range of interest. This
information may be re-plotted in dimensionless form. The viscosity ratio µ0/µ is plotted
versus the shear stress ratio in Figure 5 for paint IL. This ratio, called V in the figure, is
seen to be an approximation to the true ‘fluidity factor’ F that appears in Equation (7). F is
calculated from V using the procedure given in the Appendix. It turns out that the fluidity can
vary by as much as a factor of 10 or more between different locations in the flow, at a given
time. For example, the value of F near the indentation can become large since the liquid depth,
and the corresponding stress, can be quite large there. In this sense, these coating liquids are
strongly shear thinning.

The experimentally measured surface shapes are compared with the predictions of the
theory in Figures 6 and 7. Note that the experimental ‘window’ size is relatively small and
thus paint IL has flowed past the bottom of the window at 30 seconds. A comparison of
centerline profiles for the two paints, at two times, in given in Figure 6. The figure shows
that the coating flows out of the indentation more readily in the simulation than it does in
the experiment. The deviation is greater for paint 22 than for paint IL. Overall the agreement
between theory and experiment is remarkably good, at least for paint IL as shown in the upper
part of the figure. The shapes of the coating surface in the indentation are in good agreement.
The theory predicts that the coating quickly becomes very thin near the upper end of the hole;
this is indeed what is observed.

Figure 7 compares contour shapes for the surface of paint IL at the two times. Substrate
coordinates are given in units of R, the indentation radius. Values of coating height h are
measured in units of h0. Since h/h0 oscillates around unity away from the region of interest,
in order to avoid confusion, this contour level has been omitted from both the theoretical
and the experimentally-derived contour plots. There is, we believe, an impressive degree of
similarity between the two sets of plots. The contour levels are the same in the theory and
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Figure 5. The viscosity ratio V = µ0/µ and the fluidity factor F plotted versus h/h0 for Paint IL. The variable
h/h0 is equivalent to the stress ratio τ/τ0 for gravity drainage down a plane vertical wall.

the experimental plots; their values are given in the figure legends. Apart from the fact that
the theory predicts slightly greater emptying flow at 15 seconds than is actually observed, the
shapes and locations of the depression over the hole and the flowing mound are virtually the
same. The experimental profiles also show a high degree of bilateral symmetry.

The slight angularity or jaggedness in the experimental contours is because these plots
were constructed using only a total of 300 h values that were distributed uniformly on a
15 by 20 (x, y) grid. Specifically, every second line was used from Figure 3 and the other
experimental pictures, yielding a total of 15 lines. The coordinates of twenty equally-spaced
points were recorded for each line. The raw data for each point was a pair of pixel coordinates
taken from an enlarged version of Figure 3 on a computer monitor. Pixel values are necessarily
integers which introduces some small additional error. The experimental surface profiles were
subjected to slight smoothing through use of the following ‘diffusive’ algorithm.

h
(k+1)
ij ← h

(k)
ij + ε

[
h
(k)
i+1,j + h

(k)
i−1,j + h

(k)
i,j+1 + h

(k)
i,j−1 − 4 h

(k)
i,j

]
(11)

where ε is a number of order 10−4. This is recognizable as the simple explicit finite-difference
algorithm that may be used to solve the heat equation. The arrow in (11) signifies replacement.
The replacement is performed for all (i, j) interior points and the process is repeated about
100 times. This type of diffusive smoothing is very effective for removing the short-wave-
length grid-scale oscillations. In all cases it was verified that the maximum and minimum
values of hij were changed by less than one per cent due to iterative application of (11).

Further comparison between theory and experiment is given in Figure 8. For paint IL,
rendered theoretical profiles are shown at 15, 30 and 45 seconds after the start of the motion.
Also shown is the 30-second profile, from the experiment, that was photographed using a
close-up lens and low-angle lighting. Its appearance is quite similar to the theoretical profile.
While rendered pictures do not give quantitative information about the drops, they are more
effective for illustratating qualitative features.
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Figure 6. Centerline profiles at two times for the two different coatings; a comparison between experiment and
theory. (top) Paint IL; (bottom) Paint 22. The theoretical predictions are shown as solid curves while the exper-
imental results use lines with points. The experimental profiles are derived from ruled photographs, such as that
of Figure 3, as explained in the text. The substrate and its indentation are shown using dashed lines. Note that the
coating thickness is measured in units of initial thickness h0 while the substrate length unit is R, the indentation
radius.

Various features seen in the simulation are also observed in the experiment. Note the
pronounced edge ridge above the indentation. This ridge develops quickly. Its occurrence
is readily explained. Surface tension causes the pressure at the edge, where the indentation
meets the ‘land’, to increase. Because this edge is relatively sharp, the pressure becomes large
there and it drives the liquid away. The coating thickness, at the edge, becomes quite small,
essentially preventing further flow into the indentation from above. The draining liquid ‘piles
up’ above the edge, but also finds a path downward by following the indentation edge. The
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Figure 7. Contour plots of flow out of indentation for Paint IL. Comparison of experimental measurement (top
row) with theory (bottom row) Times are 15 seconds (left) and 30 seconds (right).

Figure 8. Theoretical and experimental pictures of the draining drop for Paint IL. Three pictures, at times 15, 30
and 45 seconds, are rendered pictures constructed from the theoretical solution. One picture, taken at 30 seconds,
is an actual photograph from the experiment.
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Figure 9. Results of a flow calculation for a Newtonian coating. These pictures can be compared with the
shear-thinning paint shown in Figure 8. The Newtonian viscosity is taken to be 135 poise in order to match
the length of the drip pattern at 45 seconds.

result is a ridge or ring around the indentation that is easily seen in Figure 8. This behavior is
generally undesirable. In decorative-painting applications, the ring will be likely to emphasize
an already unsightly defect.

The flow in Figure 8 may be compared with frames from a simulation for a Newtonian
paint. Three such frames are shown in Figure 9. The viscosity is arbitrarily selected to be
135 Poise and is constant throughout the flow field. It does not vary with time. The particular
viscosity value was selected so that, at 45 seconds, the drainage mound would be similar
in length to that shown in Figure 8. Note that, according to the flow model used here, the
viscosity only appears in the characteristic time scale T ∗1 defined in Equation (8b). Thus,
for a Newtonian liquid of constant viscosity, there is only one unsteady solution for a given
substrate shape and initial coating thickness. The time to reach any particular subsequent fluid
configuration is simply proportional to the viscosity. While the Newtonian drip also slows
down as it becomes longer, the slowdown is much more pronounced for shear-thinning liquids.
Comparing drip lengths in Figures 8 and 9, one sees that the length difference between 30 and
45 seconds is much larger for the Newtonian liquid. For the shear-thinning liquid, the average
viscosity increases substantially since, as the drip becomes longer and less thick, the stress
level also decreases. Note also that the shape of the drips is somewhat different. The shear
thinning drip is narrower than the Newtonian one because it can only flow easily out of the
lowest portion of the indentation where the stress level is high.

Results of theoretical calculations of flow from a wide indentation are shown in Figure 10.
Here the indentation diameter is three times the value that was actually used in the experi-
ments. The indentation depth is the same as in the previous cases and the indentation side
wall slope is still 45 degrees. The profiles are seen to be quite pointed. This is because surface
tension, gravity and the land coating thickness h0 form the length scale L1 given in (8a), where
L1 is the scale of small features in the flow field. The ratio of this length scale to the indentation
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Figure 10. Simulation of flow out of a wider indentation. The diameter here is 2·14 cm which is three times the
diameter of the cases treated above. A shear-thinning paint (Paint 22, top row) and a Newtonian paint (100 poise,
bottom row) are compared.
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radius R determines the general shape of the flow pattern. Thus flows out of small holes will
tend to be straight-sided while wide holes will produce drips that are almost wedge-shaped.

The figure also compares the shear-thinning Paint 22 with a Newtonian paint whose vis-
cosity is arbitrarily chosen to be 100 poise. Surface shapes are given at the same two times
for each paint. Recall that, for the small indentation previously used, a Newtonian paint with
a viscosity of 135 poise emptied at about the same rate as Paint IL. Thus, the 135 poise paint
emptied significantly faster than Paint 22 out of the small hole. With the large hole, on the
other hand, Paint 22 is faster than a Newtonian liquid of even lower viscosity. This may at
first seem puzzling, but it can be easily explained. Because the hole is large, the paint drains
to the lower part of the hole as it emerges. The larger volume available for drainage means
that the emerging stream will be thick; hence the shear stress becomes quite large. The shear-
thinning paint will thus have a low effective viscosity near the dripmark centerline and will
drain rapidly there. Note also that the dripmark for Paint 22 takes on a characteristic shape.
It is ‘hollow ground’, i.e. concave out. For the Newtonian paint, the drip is more triangular.
For Paint 22, there is greater inward flow towards the centerline. This flow replenishes the
liquid that is rapidly draining downward. The inward flow is driven by a capillary pressure
difference.

5. Concluding remarks

A numerical model, based on the lubrication approximation, has been developed to simulate
the three-dimensional time-dependent coating flow of generalized Newtonian liquids. Model
results have been validated by comparison with experimental observation. Gravitational emp-
tying of a nail head indentation on a vertical wall was chosen to be the flow problem because
of its industrial relevance.

In the course of this work, what we believe to be a new method for measuring the shape
of opaque liquid coating layers has been developed. It is simple to implement and requires
only that an accurate set of parallel lines be projected onto the liquid surface. The videotape
showing the line distortions, when the undulating surface is photographed obliquely, is then
subjected to a straightforward analysis to extract a square array of surface ordinates. The
results presented here seem to be quite accurate. The method can no doubt be improved further
by a systematic re-design. The standard method for extracting the shape of thin liquid layers,
interferometry, is most useful for transparent liquids, although an extension to opaque liquids
has been reported [25]. In any event, because the basic unit of measurement in interferometry
is the wavelength of light, that method is really suitable only for very thin liquid layers. The
new method appears to work well for much thicker layers, such as the millimeter-scale layers
encountered in this work.

A technique is given in the Appendix that allows the direct utilization of measured rheology
data. It has been standard practice to fit rheology data to one of several different functional
forms. There is an inevitable loss of accuracy in this process since the standard models are
purely empirical and there is no reason why real data should be well-fit by any one of them. If
the ultimate use of these data is further computational analysis, and if the particular application
is coating flow, the Appendix shows that the data can be used directly without any intermediate
fitting step. It is seen to be a straightforward process to convert the measured viscosity curve
to an equivalent ‘fluidity’ function.
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The low-speed, long-wavelength, thin-layer, free-surface Newtonian flow theory, com-
monly referred to as lubrication theory, has been extended to consider liquids whose viscosity
is an arbitrary input function of the local shear stress. This theoretical model is solved ef-
ficiently on a computer using finite differences and a modified alternating-direction-implicit
method. Virtually all features of the observed flow appear to be reproduced by the compu-
tation. The good agreement between theory and observation, as in the contour plot compar-
isons shown in Figure 7, supports the validity of both the data-acquisition (surface imaging)
technique and the relatively simple theoretical model.

Further theoretical calculations were made to help explain how the size of geometric
features affects the resulting flow patterns. Much larger indentations lead to flows that are
qualitatively different; these differences can be adequately explained using the model. There
are also characteristic differences between the draining flows of Newtonian and shear-thinning
liquids, as shown in Figure 10. This difference in flow shapes is sufficiently pronounced
that, after suitable calibration, the shape of a draining ‘finger’ may itself become useful as
a rheological measurement.

For one of the two paints tested, called Paint IL, the agreement between theory and ex-
periment must be considered very good. Considering that the viscosity varies, in space and
time, by about two orders of magnitude during a given run, the slight overprediction of
emptying rate, at early times, seems quite acceptable. For Paint 22, on the other hand, the
speed overprediction is more serious. In Figure 6 one observes that the 30-second experi-
mental profile appears to agree with the theorical 15-second profile. A possible explanation
for the lack of better agreement is thixotropy, which is a common property of architectural
coatings. The hallmark of thixotropy is a dependence of viscosity on the previous stress or
strain history of the moving fluid elements. Large prior stress is correlated with lower current
values of viscosity. The drawdown blade that is used to apply the uniform initial coating exerts
a relatively large shear stress on the coating. This applied stress is nonuniform however, and
is smaller for the liquid in the indentation. Thus, the liquid initially within the indentation has
not been subjected to the same lowering of viscosity. This may explain the observation of slow
initial emptying. General background information on thixotropy and its influences on coating-
flow behavior may be found in a recent survey article [26]. Incorporation of thixotropy into
an improved draining-flow model is considered to be a high priority task. Models of simple
flows, that arise in the coating and food process industries, and that include thixotropy, have
been reported [27, 28]. It is also possible, as least in principle, to consider a wider class of
viscoelastic flows.
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Appendix: The fluidity magnification factor in shear-thinning flow

This Appendix considers the modified fluidity, compared with the flow of a liquid of constant
viscosity, that is due to shear-stress-dependent viscosity. A methodology is derived whereby
arbitrary generalized Newtonian results, as measured in a viscometer, may be used directly in
a numerical procedure, without the need to fit these data to a particular rheology model. The
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generalized Newtonian fluid is one for which the viscosity depends solely on the local value
of the shear stress. It is found that, when inertia is neglected, all relevant information may be
incorporated into a single scalar factor that is an integral function of the viscometer data.

Virtually all coatings of interest are shear-thinning; that is, the viscosity µ decreases as
the shear stress τ increases. The particular function µ = f (τ) is usually determined exper-
imentally in a viscometer. Typically, the flow in the instrument is viscometric, meaning that
the strain rate γ̇ is the same scalar constant throughout the liquid at a given value of imposed
stress. Then, in scalar form,

τ = µγ̇ = f (τ)γ̇ . (A.1)

For industrial coatings, f is typically a monotonically decreasing function of its argument.
Let us consider almost-parallel flow of a thin liquid layer, down an almost-flat vertical wall.

The local value of total liquid layer thickness is H(x, y, t). The flow is driven by gravity and
also by gradients in the capillary pressure p = −σκ , where κ is the curvature of the liquid
free surface. Measure the coordinate z inward from the free surface, so that the substrate
corresponds to z = H . For small surface inclination, the surface shear stress is a vector with
components in the downward x direction and transverse y direction. �τ = �0 on the free surface
while the drainage speed �V = (u, v) is virtually parallel to the substrate and is equal to zero
there.

For inertialess, or creeping, motion, the sum of the forces on an element of the liquid
coating must equal zero. A force balance on an infinitesimal volume element within the liquid
readily yields

d�τ
dz
= ρg �i −∇p ≡ �k(x, y) (A.2)

where �i is a unit vector in the downward or x direction. Thus �τ = �kz and the strain rate is
essentially

d �V
dz
= − �τ

f (τ)
. (A.3)

where τ is the magnitude of �τ .
The flux �Q is given by

�Q =
∫ H

0

�V dz = �V z |H0 −
∫ H

0
z

d �V
dz

dz

and the first term on the right is zero, using the boundary conditions. Thus

�Q =
∫ H

0
z
�τ

f (τ)
dz = �k

∫ H

0

z2

f (τ)
dz . (A.4)

We wish to compare this flux with that of a reference Newtonian liquid so as to account for
the additional flow due to shear thinning. Let

F =
∣∣∣∣∣
�Q
�Qref

∣∣∣∣∣ . (A.5)

Here �Qref is the flux of the constant-viscosity Newtonian liquid , due to the same force per
unit volume �k. The reference viscosity µ0 is taken to correspond to the stress ρgh0 where h0

is the thickness of the initial uniform coating layer. Thus
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�Qref = �k H 3

3f (ρgh0)
(A.6)

and

F = 3f (ρgh0)

H 3

∫ H

0

z2

f (kz)
dz . (A.7)

Here k = |�k|.
Any given plot of viscosity µ versus stress τ may be re-scaled and put into the dimension-

less form

µ

µ0
= R

(
τ

τ0

)
(A.8)

where τ0 = ρgh0. Thus R(1) = 1. If k were simply equal to ρg, the argument of R would
simply be the local layer thickness, ζ say, divided by the reference depth h0. Because this is
not true in general, we will scale the integration variable z in (A.7). Let z = aζ , then

F = 3f (ρgh0)

(H/a)3

∫ H/a

0

ζ 2

f (kaζ )
dζ .

Now take a = ρg/k; then we have

F = 3

[kH/(ρg)]3
∫ kH/(ρg)

0
ζ 2 f (ρgh0)

f (ρgζ )
dζ = 3

[kh/(ρg)]3
∫ kH/(ρg)

0

ζ 2

R(ζ/h0)
dζ

Thus F , the fluidity magnification factor due to shear thinning, is seen to be a function only
of the effective depth he,

F(he) = 3

h3
e

∫ he

0

ζ 2

R(ζ/h0)
dζ . (A.9)

The effective liquid depth is given by

he = k

ρg
H = k

ρg
(h− h1) (A.10)

where we recognize that h(x, y, t) and h1(x, y) are the equations for the moving free surface
and the indented substrate, respectively. The zero level for each of the two surfaces is the flat
or ‘land’ area of the substrate. Note that the effective depth includes the weight-increase factor
k/ρg. For typical cases considered here, the quantity h − h1 can become as large as eight to
ten times the coating thickness h0 at certain locations and times during the emptying flow. The
factor k/ρg is typically 1·5 or smaller.

Figure 5 shows the factor F and the inverse viscosity ratio V = µ0/µ plotted as a function
of stress ratio τ/τ0. The stress ratio is equivalent to the coating thickness ratio H/h0 for a
perfectly planar free surface. The plot uses the rheology data for paint IL. Note that V is
a crude approximation to F . However, F is always less than V because the layer-averaged
stress is always less than the stress at the substrate.
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